Effects of remote, retroactive intercessory prayer on outcomes in patients with bloodstream infection: randomised controlled trial

Leonard Leibovici

BMJ 2001;323:1450-1451
doi:10.1136/bmj.323.7327.1450

Updated information and services can be found at:
http://bmj.com/cgi/content/full/323/7327/1450

These include:

References
This article cites 4 articles, 2 of which can be accessed free at:
http://bmj.com/cgi/content/full/323/7327/1450#BIBL

10 online articles that cite this article can be accessed at:
http://bmj.com/cgi/content/full/323/7327/1450#otherarticles

Rapid responses
86 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/323/7327/1450#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/323/7327/1450

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top left of the article

Topic collections
Articles on similar topics can be found in the following collections

Randomized Controlled Trials: examples (576 articles)
Religion / Spirituality (77 articles)

Notes

To order reprints follow the "Request Permissions" link in the navigation box

To subscribe to BMJ go to:
http://resources.bmj.com/bmj/subscribers
Effects of remote, retroactive intercessory prayer on outcomes in patients with bloodstream infection: randomised controlled trial
Leonard Leibovici

Abstract

Objective To determine whether remote, retroactive intercessory prayer, said for a group of patients with a bloodstream infection, has an effect on outcomes.

Design Double blind, parallel group, randomised controlled trial of a retroactive intervention.

Setting University hospital.

Subjects All 3393 adult patients whose bloodstream infection was detected at the hospital in 1990–6.

Intervention In July 2000 patients were randomised to a control group and an intervention group. A remote, retroactive intercessory prayer was said for the well being and full recovery of the intervention group.

Main outcome measures Mortality in hospital, length of stay in hospital, and duration of fever.

Results Mortality was 28.1% (475/1691) in the intervention group and 30.2% (514/1702) in the control group (P for difference = 0.4). Length of stay in hospital and duration of fever were significantly shorter in the intervention group than in the control group (P = 0.01 and P = 0.04, respectively).

Conclusions Remote, retroactive intercessory prayer said for a group is associated with a shorter stay in hospital and shorter duration of fever in patients with a bloodstream infection and should be considered for use in clinical practice.

Introduction

Two randomised controlled trials tested the effect of remote intercessory prayer (praying for persons unknown) on outcomes in patients admitted to an intensive coronary care unit. Both studies showed a beneficial effect. A recent systematic review of the efficacy of distant healing concluded that “approximately 57% (13 of 23) of the randomised, placebo-controlled trials of distant healing … showed a positive treatment effect” and that “the evidence thus far warrants further study.”

The purpose of the present study was to extend these observations to patients with another severe disorder, bloodstream infection. As we cannot assume a priori that time is linear, as we perceive it, or that God is limited by a linear time, as we are, the intervention was carried out 4–10 years after the patients’ infection and hospitalisation. The hypothesis was that remote, retroactive intercessory prayer reduces mortality and shortens the length of stay in hospital and duration of fever.

Methods

All adult patients whose bloodstream infection was detected at a university hospital (Rabin Medical Center, Bellinson Campus) in Israel during 1990–6 were included in the study. Bloodstream infection was defined as a positive blood culture (not resulting from contamination) in the presence of sepsis.

In July 2000 a random number generator (Proc Uniform, SAS, Cary, NC, USA) was used to randomise the patients into two groups. A coin was tossed to designate the intervention group. A list of the first names of the patients in the intervention group was given to a person who said a short prayer for the well being and full recovery of the group as a whole. There was no sham intervention.

Three primary outcomes were compared: the number of deaths in hospital, length of stay in hospital from the day of the first positive blood culture to discharge or death, and duration of fever. Patients were defined as having fever on a specific day if one of three temperature measurements taken on that day showed a temperature of >37.5°C. The χ² test was used to test for the significance of the results shown in the tables. As most of the continuous variables did not have a normal distribution, the Wilcoxon rank sum test was used for comparisons.

Results

Of 3393 patients with a bloodstream infection, 1691 patients were randomised to the intervention group and 1702 to the control group. No patients were lost to
Follow up. The groups were similar with regard to the main risk factors for death (table 1).

Mortality was 28.1% (475/1691) in the intervention group and 30.2% (514/1702) in the control group (P = 0.4). The length of stay in hospital and duration of fever were significantly shorter in the intervention group (P = 0.01 and P = 0.04, respectively) (table 2).

Discussion

Remote, retroactive intercessory prayer was associated with a shorter stay in hospital and a shorter duration of fever in patients with a bloodstream infection. Mortality was lower in the intervention group, but the difference between the groups was not significant. A larger study might have shown a significant reduction in mortality.

The similarity in the risk factors in the two groups showed that the randomisation and allocation concealment were good. The very design of the study assured perfect blinding to patients and medical staff of allocation of patients and even the existence of the trial. Regrettably, the very same design meant that it was not possible to obtain the informed consent of the patients.

No mechanism known today can account for the effects of remote, retroactive intercessory prayer said for a group of patients with a bloodstream infection. However, the significant results and the flawless design prove that an effect was achieved. To quote Harris et al: “when James Lind, by clinical trial, determined that lemons and limes cured scurvy aboard the HMS Salis- bury in 1753, he not only did not know about ascorbic acid, he did not even understand the concept of a ‘nutrient’. There was a natural explanation for his findings that would be clarified centuries later, but his inability to articulate it did not invalidate his observations.”

Conclusion

Remote, retroactive intercessory prayer can improve outcomes in patients with a bloodstream infection. This intervention is cost effective, probably has no adverse effects, and should be considered for clinical practice. Further studies may determine the most effective form of this intervention and its effect in other severe conditions and may clarify its mechanism.

Contributors: LL planned and performed the study and is the guarantor.

Funding: None.

Competing interests: None declared.


Table 1 Baseline characteristics of patients. Values are percentages in each group, unless stated otherwise. None of the differences between the groups was significant

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention group (n=1691)</th>
<th>Control group (n=1702)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>46.3</td>
<td>48.5</td>
</tr>
<tr>
<td>Median (range) age (years)</td>
<td>72 (18-101)</td>
<td>72 (18-99)</td>
</tr>
<tr>
<td>Source of infection:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td>8.3</td>
<td>9.4</td>
</tr>
<tr>
<td>Urinary tract</td>
<td>31.3</td>
<td>28.9</td>
</tr>
<tr>
<td>Intra-abdominal</td>
<td>9.5</td>
<td>8.9</td>
</tr>
<tr>
<td>Soft tissues</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Neutropenic fever</td>
<td>3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>Intravascular line</td>
<td>8.3</td>
<td>6.4</td>
</tr>
<tr>
<td>Other</td>
<td>7.8</td>
<td>9.6</td>
</tr>
<tr>
<td>Unknown</td>
<td>22.3</td>
<td>23.2</td>
</tr>
<tr>
<td>Septic shock</td>
<td>11.2</td>
<td>11.8</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>5.7</td>
<td>5.8</td>
</tr>
<tr>
<td>Infected while in hospital</td>
<td>40.2</td>
<td>41.9</td>
</tr>
<tr>
<td>Median (range) creatinine (mg/dl)</td>
<td>1.2 (0.2-14.8)</td>
<td>1.2 (0.2-15.0)</td>
</tr>
<tr>
<td>Median (range) albumin (mg/dl)</td>
<td>3.8 (1.1-5.1)</td>
<td>3.8 (1.5-5.0)</td>
</tr>
</tbody>
</table>

Table 2 Numbers of days’ stay in hospital and duration of fever

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Lower quartile</th>
<th>Median</th>
<th>Upper quartile</th>
<th>Maximum</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay in hospital:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>165</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>325</td>
</tr>
<tr>
<td>Duration of fever:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>49</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>